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Chapter 5
Manipulating Programmed Cell Death 
Pathways for Enhancing Salinity 
Tolerance in Crops

Ahmad Arzani

Abstract One of the key challenges for researchers is to obtain a deeper under-
standing of the strategies and mechanisms of plant adaptation to environmental 
stress that help overcome the limitations associated with climate change and loss of 
biodiversity. In this context, tolerance to salinity stress is one of the main abiotic 
factors constraining the plant growth, and production is of special importance. 
Programmed cell death (PCD) plays a protective role against biotic and abiotic 
stresses. PCD might play an important role in the maintenance of normal tissue 
homeostasis, regulation of cell metabolism, and remodeling of tissues after injury 
and infection as well as the elimination of damaged cells. Salinity stress induces an 
alteration in chloroplasts, mitochondria, cytoplasm, plasma membrane (PM), endo-
plasmic reticulum (ER), Golgi apparatus, vesicle formation and trafficking, and 
vacuoles formation which may result in PCD in plants. The overexpression of pro- 
survival genes including anti-apoptotic genes and those involved in suppression of 
apoptosis genes in the transgenic plants to enhance abiotic stress tolerance has been 
the subject of a number of investigations, particularly in the context of salinity toler-
ance. Therefore, the development of transformed plants for resistance to apoptosis 
could be an effective approach to improving salinity tolerance, while the use of 
complementary techniques like RNA-interfering (RNAi)-mediated gene knock-
downs has been shown to be an interesting and appealing alternative. The objective 
of this review is to summarize the current state of knowledge on improving salinity 
tolerance in crop plants through manipulation of PCD pathways.
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Abbreviations

AIF Apoptosis-inducing factor
AL-PCD Apoptotic-like PCD
ASPP Apoptosis-stimulating proteins of p53
ACD Autophagic cell death
BAG Bcl-2-associated athanogene
Bak BCL-2 antagonist/killer-1
Bax Bcl-2-associated X protein
Bcl-2 B-cell lymphoma2
Bcl-xl BCL-2-like 1
Ca2+ Calcium ion
ER Endoplasmic reticulum
FB1 Fumonisin B1
GORK Guard cell outward-rectifying K+ channel
H2O2 Hydrogen peroxide
HR Hypersensitivity
IAP Inhibitor of apoptosis
K+ Potassium ion
MAPK Mitogen-activated protein kinase
Mcl-1 Myeloid cell leukemia-1
Na+ Sodium ion
NADPH Nicotinamide adenine dinucleotide phosphate hydrogen
PM Plasma membrane
RNAi RNA interfering
ROS Reactive oxygen species
PCD Programmed cell death
PLC Phospholipase C
SKOR Outward-rectifying K+ channel
VPE Vacuolar processing enzyme

5.1  Introduction

Abiotic stress threatens staple crop production, coupled with the expanding world 
population necessitate not only efficient breeding strategies for developing abiotic 
stress tolerance crop plants but also the extension of plant production into the mar-
ginal regions including saline soil and water (Arzani and Ashraf 2016). Soil or water 
salinity is one of the key abiotic stresses that cause plant growth and yield reduction 
worldwide (Arzani 2008). Abiotic stress can be sensed and appropriate responses 
triggered implicating changes in growth, development, and metabolism (Conde 
et  al. 2011). Plants’ response to salinity stress represents the sum of numerous 
parallel- distributed processes that act to alleviate hyperosmolarity and reestablish 
ionic homeostatic conditions in cells (Arzani and Ashraf 2016). Programmed cell 
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death (PCD) is also among the evolved plant strategies to overcome these adverse 
conditions. PCD operates during growth and development as well as in response to 
various hostile environmental conditions. In this way the removal of damaged and 
superfluous cells can be facilitated; thus, cellular differentiation and homeostasis 
are supported in plants (De Pinto et al. 2012).

Therefore, PCD plays not only a protective role against abiotic and biotic stresses 
but also a major role in plant development. PCD is a highly coordinated process 
with series of steps involving specific nucleases and proteases and results in the 
selective elimination of the cells. In animals, autophagy, apoptosis, and programmed 
necrosis are the three major PCD forms, clearly characterized by their morphologi-
cal features (Bialik et al. 2010; Ouyang et al. 2012). Autophagy is usually defined 
by the accumulation of autophagic vacuoles. Chromatin condensation, the forma-
tion of apoptotic bodies and nuclear fragmentation by the caspases as the execution-
ers of apoptosis are the hallmarks of apoptosis. A more passive form of PCD is 
necrosis, which is distinguished by the presence of PM rupture and cytoplasmic 
swelling.

Autophagic cell death (ACD) is one of the characterized types of PCD. Autophagy 
process is initiated with the generation of double membrane-bound autophago-
somes, encompassing cytoplasmic organelles and macromolecules, headed for 
recycling (Huett et al. 2010). There is increasing recognition that autophagic cells 
commit suicide to prevent excessive stress by undertaking cell death, which dis-
criminates from programmed necrosis and apoptosis (Bialik et  al. 2010). 
Nonetheless, autophagy regulates an enormous number of physiological and patho-
logical functions such as cell differentiation, infections, starvation, cell survival, 
and death (Liu et al. 2010; Michaeli et al. 2016). The role of autophagy in cell death 
has been reviewed by Minina et al. (2014). In addition, recent advances in plant 
autophagy regarding mechanisms of selective autophagy, regulation of autophagy, 
and role of autophagy in recycling and availability of nutrients have recently been 
reviewed by Michaeli et al. (2016).

“Apoptosis,” as the second form of PCD, comes from a Greek root word that has 
been used to refer to “dropping off” the leaves or petals from a tree (Kerr et  al. 
1972). Given the definition roots, apoptosis is likely the most frequent type of PCD, 
while the biological impact of other non-apoptotic types may also be a driving force 
of the PCD especially in plants. Apoptosis is characterized by morphological altera-
tions of nucleus and cytoplasm including cell shrinkage, pyknosis (DNA condensa-
tion), and karyorrhexis (nuclear fragmentation) as well as biochemical changes 
such as internucleosomal cleavage of DNA, a number of intracellular substrate 
cleavages by specific proteolysis, and phosphatidylserine externalization (Ouyang 
et al. 2012).

Programmed necrosis as the third type of PCD contributes to cell swelling, cell 
lysis, and organelle dysfunction (Wu et al. 2012). Therefore, PCD may have a role 
in the maintenance of tissue homeostasis, regulation of cell metabolism, and remod-
eling of tissues after injury and elimination of damaged cells (Wynn et al. 2013). In 
contrast to the wealth of knowledge regarding the molecular mechanisms of PCD, 
in plants the molecular networks regulating PCD are still in their infancy, and 
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 information on this topic is scarce. This is in spite of the abundance and the impor-
tance of PCD throughout plant life span occurring as a conspicuous part of develop-
ment (dPCD) as well as a response to abiotic and biotic stresses (ePCD) (Lam 2004; 
Huysmans et al. 2017). Although plants react differently to various abiotic stresses, 
the initial recognizing and induction of reactive oxygen species (ROS) generation 
are a common set of response to abiotic factors in all plant species (Sewelam et al. 
2016). Nonetheless, production of ROS is a crucial factor in plant stress response 
and is also associated to in signaling of PCD (Chen et al. 2009a; Kumar et al. 2016).

In animals, ICE-/CED-like family proteases, named caspases, play a central role 
in PCD such as apoptosis and pyroptosis (Green 2011). In spite of the absence of 
caspases (abbreviation of cysteinyl aspartate-specific proteases) in plants, the meta-
caspases were postulated as the functional caspase homologs in plants (Bonneau 
et al. 2008). In recent years, significant knowledge has been gained in these areas 
including the characterization of two PCD types: vacuolar PCD and necrotic 
PCD.  The apoptotic cells can be eliminated in the animal using macrophages, 
whereas in plant lytic vacuoles progressively engulf and digest the cytoplasmic con-
tent during vacuolar cell death. On the other hand, necrosis is an alternative form of 
cell death which is triggered by severe stress and characterized by mitochondrial 
dysfunction, premature rupture of the plasma membrane, and organized cell disas-
sembly. Vacuolar processing enzyme (VPE) is a plant cysteine proteinase that is 
mediator driving the execution of various PCD and is considered as a counterpart of 
animal caspase 1 (Hatsugai et al. 2015).

Climate change and biodiversity loss create new challenges for developing 
dynamic strategies of plant adaptation to the changing environment. Stress-induced 
PCD markedly influences plant growth and yield, and it is an important threat to 
agriculture production (Mittler and Blumwald 2010). The applied and basic research 
on stress-induced PCD and stress responses, with the eventual goal of manipulating 
them for practical use, are incredibly challenging areas that attract the growing 
interest. Therefore, research on PCD-induced abiotic stress and stress responses in 
plants has strengthened significantly during the past years, and thereby understand-
ing of regulatory mechanisms and knowledge of the immunity role will undoubt-
edly help to reach the eventual goal to lessen yield losses (Petrov et al. 2015; Wang 
et al. 2015). The objective of this review is to summarize the current state of knowl-
edge on improving salinity tolerance in crop plants through manipulation of PCD 
pathways.

5.2  PCD in Response to Abiotic Stress

Plants tolerate the adverse environmental conditions by employing various adapta-
tion mechanisms including toxin exclusion and dramatic amelioration of suscepti-
bility (hypersensitivity) where the abiotic stress is extreme. The monitored level of 
applied heat stress-induced PCD in plant cells, where heat shock could be respon-
sible for the cell death morphology, is reported in Arabidopsis (Hogg et al. 2011), 
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tobacco (Vacca et  al. 2004), soybean (Zuppini et  al. 2006), maize (Wang et  al. 
2015), and lace plant (Dauphinee et  al. 2014). PCD in plant species has been 
induced by low or high temperature in tobacco (Koukalova et al. 1997), cucumber 
(Balk et al. 1999), Arabidopsis thaliana (Swidzinski et al. 2002), and maize (Wang 
et al. 2015).

Plant symptoms illustrating either undesirable or desirable response to salinity 
stress can be visually rated in the field. Nevertheless, a reduction in growth which is 
manifested by leaf burn and necrotic lesions on the leaves is a well-known indicator 
of exposure of plants to salinity (Tanou et al. 2009). It is suggested that leaf necrosis 
could be caused by the failure of the cells to avert the accumulation of Na+ ions into 
the cytoplasm (Greenway and Munns 1980); in other words, leaf necrosis may be a 
symptom of the breakdown of ionic regulation (Subbarao and Johansen 1994). In 
barley, Patterson et al. (2009) compared two barley cultivars (Sahara and Clipper) 
exposed to 100 mM NaCl treatment and observed that “Sahara” cultivar had signifi-
cantly less leaf necrosis and higher leaf Na+ concentrations than “Clipper,” conclud-
ing that “Sahara” has a higher tolerance to accumulated Na+. However, despite a 
general consensus attributing leaf necrosis to an undesirable reaction in plant salin-
ity stress, it is probably most disputable, and it could also be considered as the 
fundamental lack of knowledge about the reaction at the cellular level and entirely 
limited to macroscopic observations. Nevertheless, pathogen-induced HR cell death 
is one of the most efficient plant defense strategies, whereas pathogen- secreted 
toxin-induced cell death is a necrotrophic pathogen tactic for infection. Interestingly, 
although distinct mechanisms may regulate toxin-induced cell death and pathogen- 
induced cell death, both were mediated by the same VPE (Kuroyanagi et al. 2005).

Leaf margin, leaf tip burn, and leaf necrosis are among the plant responses to 
drought stress which can be found at the late vegetative stage. It was suggested that 
drought-induced leaf necrosis can be illustrated by the lack of anthocyanin pigmen-
tation (Rosenow et al. 1983). Therefore, leaf necrosis is considered distinctly differ-
ent from that of the disease symptom, where leaf necrosis is known as desirable 
plant reaction of host resistance named as “hypersensitivity (HR).” HR is a plant- 
specific PCD which is essential for defense response to restrict the spread of patho-
gens. Apoptosis is generally regarded as a critical physiological cell death program 
required for the tissue homeostasis as well as an active suicidal response to various 
pathological or physiological stimuli in the mammalian organism (Kabbage et al. 
2017). Among the several cell death pathways that have been postulated, apoptotic- 
like PCD (AL-PCD) seems to be an interesting operational mode in plants leading 
to a corpse morphology that is similar to the apoptotic morphology perceived in 
animal cells (Reape and McCabe 2008). It is now established that AL-PCD is an 
essential cellular process in plants that have a crucial role in the developmental, 
stress-induced, and senescence processes as well as in response to pathogen infec-
tion (Lam et al. 1999). Apart from the developmental and biotic stimuli, it has been 
shown that AL-PCD is induced by abiotic stresses such as high-fluence UV radia-
tion and heat stress (Foyer and Noctor 2005; Doyle et al. 2010).

Caspases are either involved or not involved in PCD. Accordingly, PCDs can be 
categorized into two groups, caspase-independent and caspase-dependent PCD 

5 Manipulating Programmed Cell Death Pathways for Enhancing Salinity Tolerance…



98

(Kroemer and Martin 2005). Apoptosis is entirely contingent upon caspase activa-
tion and thus caspase-dependent PCD represents typical apoptosis. Caspase- 
independent mechanism of cell death comprises paraptosis, autophagy, necrosis-like 
PCD, apoptosis-like PCD, and mitotic cataclysm. The non-caspase PCD was found 
to be associated with caspase-independent elimination, including the use of mito-
chondrial protein apoptosis-inducing factor (AIF) (Cande et al. 2002; Kroemer and 
Martin 2005; Zanna et al. 2005). Analysis of the Arabidopsis genome indicated the 
incidence of five close homologs of AIF which detected monodehydroascorbate 
reductases (MDARs) (Lisenbee et  al. 2005) while AIF initially characterized in 
mammalian mitochondrial DNA (Susin et al. 1999). Of AL-PCD regulation espe-
cially relevant to plant cells is the affirming dual target sites of MDAR that is to both 
chloroplasts and mitochondria.

In plants, the role of mitochondrial proteins triggering cell death is still in its 
infancy and debatable (Reape and McCabe 2010). However, a pivotal role of the 
mitochondrion in plant PCD has also been implicated in plant responses to salinity 
stress (Yao et al. 2004; Lin et al. 2006; Chen et al. 2009b; Wang et al. 2010; Monetti 
et al. 2014; Hamed-laouti et al. 2016). ROS produced from the electron transport 
chain in mitochondrion causes dysfunction of mitochondrial lipids and proteins 
(Yao et al. 2004) leading to the opening of a nonspecific pore in the inner mitochon-
drial membrane, also called the permeability transition pore (PTP) and release of 
“caspase-like” proteins (Yao et al. 2004; Reape and McCabe 2010; Sirisha et al. 
2014). The dysfunction of mitochondria has been proposed as a prerequisite for the 
establishment of NaCl-induced PCD in several plant species comprising both gly-
cophyte (A. thaliana, rice, tobacco) and halophyte (Cakile maritima, Thellungiella 
halophila) (Lin et al. 2006; Chen et al. 2009b; Wang et al. 2010; Monetti et al. 2014; 
Hamed-laouti et  al. 2016). There are considerable evidence and speculation that 
interaction between ROS and antioxidants would supply a boundary for the environ-
mental metabolic signals mediating activation of the acclimation of the cells to 
stress or alternatively induction of PCD (Foyer and Noctor 2005).

A dual biological role for ROS might be attributed to the leaf senescence includ-
ing regulation of the expression of senescence-associated genes and elevation of the 
program of cell death by direct oxidizing target macromolecules. Interestingly, tak-
ing in account the chloroplasts is one of the sources of ROS production in plants 
(Doyle et al. 2010) would help to resolve the question as to what extent the PCD 
reaction is responsive to the environmental stimuli in the plant kingdom. In addi-
tion, photoreduction of oxygen and energy transfer from triplet excited chlorophyll 
to oxygen, respectively, are responsible for generating superoxide radicals (O−2) and 
singlet oxygen (1O2) in chloroplasts (Kim et al. 2012). The PCD is induced with 
increasing singlet oxygen (1O2) concentration in chloroplasts, but the output of 1O2- 
mediated chloroplast leakage and liberate of chloroplastic proteins to the cytosol on 
the 1O2-mediated collapse of cells needs to be elucidated.

PCD, a genetically controlled cell response, has evolved under selective pressure 
and thus should be advantageous to the plant. Despite the recent progress in the 
understanding expression of the ROS-responsive genes which induced in response 
to abiotic and biotic stress, many challenges remain, particularly with regard to the 
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beneficial effects of the ROS-dependent genes influencing PCD on plant growth and 
resistance to both abiotic and biotic stresses. Hence, it appears possible that induc-
tion of the ROS-dependent PCD pathway in plants can be part of physiological 
changes that normally occur during an acclimation response to enhance stress 
resistance.

PCD has been perceived traditionally as a vital protective mechanism for disease 
resistance in plants. Today, it appears that PCD plays a fundamental role in the regu-
lation of much more diverse cellular functions, such as in response to biotic and 
abiotic stress as well as developmental processes (see a recent review by Huysmans 
et al. 2017). It should be acknowledged that since the dissection of the PCD at the 
whole-plant level is difficult, most of the attempts have been made at in vitro cell 
assays. Here a new scenario for the biological roles of PCD at the whole-plant level 
to facilitate the possible explanation contributing to the induction of PCD in 
response to abiotic stress is presented. The results of assessment of abiotic stress 
tolerance in the C4 model plant, Setaria viridis (L.) Beauv. accessions originated 
from diverse geographical areas of the world, a portion of which has been published 
elsewhere (Saha et  al. 2016), suggested to us that PCD might have occurred in 
response to salinity stress (Saha et  al. unpublished data). Interestingly, only one 
accession showed leaf necrosis after 4 weeks of treatment at 300 mM NaCl concen-
tration (Fig. 5.1) and astonishingly ranked as one of the most salinity-tolerant geno-
types. Further in vitro positron emission tomography (PET) study showed a clear 
difference in Na22 uptake and transport in this accession compared to a sensitive 
accession (Ariño-Estrada et al. 2017). However, observations at the cellular level 
are more pertinent for assessing the possible role of PCD in salinity tolerance than 

Fig. 5.1 Leaf necrosis resulted from 300 mM NaCl treatment for 4 weeks in one of the Setaria 
viridis (L.) Beauv. accessions
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those at the whole-plant level. It is also important to note that leaf necrosis was 
observed at the reproductive growth stage, while the PET imaging has been con-
ducted at the seedling stage. The inconsistency with the previously characterized 
leaf necrosis, as being regarded typical for the sensitive plant to salinity stress, can 
be explained by developmental stage differences in high levels of NaCl accumula-
tion occurred in the leaf cells at either the reproduction (present study) or the veg-
etative/seedling stage (previous studies). In addition, a complex combination of 
differential expression of genes encoding the photosynthetic enzymes and anatomi-
cal characterization was functionally essential for evolving more effective photo-
synthetic mechanism in the C4 plants. C4 plants exhibit higher adaptation to tropical 
regions than C3 plants and assumed to have an evolutionary adaptation in hot areas 
of the world in response to diminishing ambient CO2 concentration (Sage 2004). 
Therefore, this finding inspires us to look for an alternative interpretation. Further 
work on the macroscopic, microscopic, and molecular aspects of the salt-tolerant 
leaf necrosis structure is underway to test the hypothesis that leaf necrosis might be 
a favorable plant response (i.e., HR) to salinity.

As illustrated in Fig. 5.2, plant cells undergoing PCD exhibit the following fea-
tures: condensation of the cytoplasm and the nucleus, the retraction of the plasma 
membrane from the cell wall, loss of membrane integrity, DNA laddering, release 
of cytochrome c from mitochondria, increase in activity of the proteases of caspase- 
1- like and caspase-3-like, and alterations in the K+ efflux and ion homeostasis 
(Wang et al. 2010; Poor et al. 2013; Reape and McCabe 2013; Reape et al. 2015).

5.3  PCD in Response to Salinity Stress

Although to date no report on HR-like response has been documented for plant 
salinity tolerance, several researchers have investigated PCD at the cellular level. 
The influences of NaCl stress primarily on chloroplasts, mitochondria, cytoplasm, 
plasma membrane (PM), endoplasmic reticulum (ER), Golgi apparatus, vesicle for-
mation and trafficking, and vacuoles have been investigated in plants. The degrada-
tion of the inner chloroplast membrane due to the NaCl-induced stress on the 
ultrastructure of plant leaves has been reported by Hernandez et  al. (1995). The 
disintegration of organellar membranes (particularly the degradation of thylakoid 
membrane of chloroplast) in cells was found to be one of the major effects of salin-
ity stress (Mitsuya et al. 2000). Salinity stress caused swelling of thylakoid as one 
of the main alterations of chloroplast ultrastructure in barley (Zahra et al. 2014) and 
rice (Yamane et al. 2012). The wrinkled effects of salinity on chloroplast ultrastruc-
ture have been observed at 100 mM NaCl treatment in tomato (Khavari-Nejad and 
Mostofi 1998) and at 200 mM NaCl treatment potato (Fidalgo et  al. 2004) cells 
under in vitro conditions. The chloroplasts can play a similarly important role as do 
the mitochondria in triggering PCD, by regulating ROS signaling. The chloroplasts 
generate more ROS in a less efficient photosynthesis caused by salinity stress, and 
hence the ROS leads to cell death (Doyle et al. 2010; Kim et al. 2012; Aken and 
Breusegem 2015; Reape et al. 2015).
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Fig. 5.2 Overview of salinity stress-induced programmed cell death (PCD) in plants. Salinity 
stress causes the following changes in the plant cell: (1) phospholipase C (PLC), a plasma mem-
brane (PM) enzyme, liberates IP3 from membrane phospholipid, which results in release of Ca2+ 
from internal stores; (2) an increased Ca2+-ATPase gene expression leads to increase in this 
membrane- bound enzyme, which provides energy to drive the cellular Ca2+ pump. An increase 
Ca2+ in cytosol triggers PM-bound NADPH oxidase activity, which produces superoxide in the 
apoplast. This reactive oxygen species (ROS) transmits death signals through mitogen-activated 
protein kinases (MAPK) signaling pathway. In addition, death signals can be emitted by vacuolar 
processing enzyme (VPE) releasing from vacuole. The ROS levels could also be increased by a 
sense of release of either cytochrome c (Cyt c) or cytochrome f (Cyt f) from mitochondrion. 
Signals are transmitted to nucleus and ultimately cell execution proteins is synthesized, which 
results in PCD
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A profound downgrading in cytoplasmic streaming was observed at 100  mM 
NaCl treatment. In plants, cytoplasmic streaming is a marked attribute of cell com-
partment, in which vesicles and organelles transport along the strands of cytoplasm 
containing actin filaments. Cytoplasmic streaming indirectly explores some features 
of the metabolic function in the cell (Mansour and Salama 2004; Shimmen and 
Yokota 2004; Pieuchot et al. 2015). It has been postulated that salinity stress causes 
an increase in cytoplasmic Ca2+, which may detain cytoplasmic streaming through 
the support of internal Ca2+ stores (Knight 2000). Calcium does not solely play a key 
role in signaling function but might also trigger PCD and mediate death-specific 
enzymes in both animal and plant cells (Boursiac et al. 2010). In plants, Zhu et al. 
(2010) used the RNA-interfering (RNAi) silencing of the Ca2+ pump NbCA1 and 
showed that endomembrane Ca2+ pump operates in mediating the kinetics of a PCD 
pathway triggered by the pathogen. As shown in Fig.  5.2, a plasma membrane 
enzyme, phospholipase C (PLC), liberates IP3 from membrane phospholipid. The 
release of Ca2+ from internal stores is in turn mediated by IP3. It is hence suggested 
that the amplification of the stress signals during stress through enhancing the level 
of the stress-induced Ca2+ signal could be mediated by a stress-induced PLC gene 
(Hirayama et al. 1995). Likewise, cytosolic Ca2+ was increased by salinity stress in 
tobacco cells after a few minutes of treatment, and membrane potential of mitochon-
dria was diminished before the occurrence of PCD (Lin et al. 2005). Pretreatment of 
protoplasts with Ca2+ chelators such as EGTA or LaCl3 delayed salinity stress-
induced PCD through the increase in cytosolic Ca2+ implying an essential role for 
Ca2+ in the triggering of PCD in plants (Lin et al. 2005; Li et al. 2007a).

The function of Ca2+-ATPases is amended substantially in response to abiotic 
stress in plants. Ca2+-ATPase membrane-bound enzyme hydrolyzes ATP to supply 
energy to run the cellular Ca2+ pump. The transcript levels of genes encoding a 
putative ER Ca2+-ATPase have been increased by salinity stress in tobacco cells 
(Perez- Prat et al. 1992) and in tomato (Wimmers et al. 1992). In tobacco, Perez-
Prat et  al. (1992) observed an increased Ca2+-ATPase gene expression in both 
adapted and unadapted cells cultured at 428 mM NaCl, while the levels of tran-
scripts were much higher in adapted cells than in unadapted cells. Likewise, an 
enhanced Ca2+-ATPase transcript has been observed in plants treated with 50 mM 
NaCl for 24 h in tomato (Wimmers et al. 1992). In addition, it was suggested that 
the regulation of expression of Ca2+-ATPase gene could be regulated by the RNAi 
such as 22 nt miR4376 in tomato (Wang et al. 2011). It has been demonstrated that 
Ca2+-ATPase comprises five functional domains which are named based on their 
function or position. Hence, they include P-domain (the catalytic core), A-domain 
(actuator domain), N-domain (nucleotide-binding domain), as well as S- and 
T-domains (membrane-embedded domains). The ATP hydrolysis is performed by 
the cytoplasmic domains (A, P, and N), whereas the T- and S-domains play role in 
the ion transport, together with conformational changes through tertiary contacts 
and linkers (Palmgren and Nissen 2011).

It is argued that the burden of PCD categorizations should be put on the tono-
plast disruption relating to cytoplasmic clearing since the vacuole elaborates on 
various plant PCD types including HR, differentiation of tracheary elements, 
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senescence of various plant tissues, and so on (van Doorn 2011). Accordingly, the 
only terminology of two classes of PCD comprising necrosis and vacuolar cell 
death was suggested by van Doorn (2011). Vacuolar cell death is caused by a pro-
gression of an autophagy-associated phenomenon and the release of hydrolases 
from ruptured vacuoles (Bagniewska-Zadworna and Arasimowicz-Jelonek 2016). 
In addition, vacuole disintegration and tonoplast disruption are extremely rapid and 
irreversible processes and represent an unequivocal step in a cell headed for death 
in plant roots (Bagniewska-Zadworna and Arasimowicz-Jelonek 2016). In 
Physcomitrella patens, it was shown that knockout of vacuolar ACA pump (PCA1) 
gene could lead to higher sensitivity to salinity stress, because of diminished level 
of NaCl-triggered Ca2+ in the cytosol (Qudeimat et  al. 2008). Furthermore, the 
rapid enlargement of vacuolar volume has been observed under in vitro salinity 
conditions in mangrove [Bruguiera sexangula (Lour.) Poir.] cells and barley 
(Hordeum vulgare L. cv. Doriru) root meristematic cells (Mimura et  al. 2003). 
Paradoxically, this phenomenon was not confirmed in pea (Pisum sativum L.) 
(Mimura et al. 2003). The accumulation of Na+ ions in the central vacuole causes 
enhanced vacuolar volumes and is considered as one of the strategies employed by 
the cell in response to salinity stress.

The detrimental effects of ROS on plant tissues are being increasingly recog-
nized, but the biochemical mechanism linking the ROS production and PCD is 
poorly known. The main enzymes responsible for superoxide anion generation are 
cell wall-associated peroxidases and apoplastic plasma membrane-bound NADPH 
oxidases which are regulated by various environmental and developmental stimuli 
(Gechev et al. 2006; Sagi and Fluhr 2006). Salinity stress causes an increase in Ca2+ 
in the cytosol and triggers PM-bound NADPH oxidase activity, which produces 
superoxide in the apoplast (Monetti et al. 2014). Nevertheless, ROS are involved in 
signaling pathways and mediating PCD activation (Chen et al. 2009a; Mittler 2017) 
as they influence the activity of mitogen-activated protein kinase (MAPK), which is 
able to induce several nuclear transcription factors (Fig. 5.2). The overaccumulation 
of ROS in the cells causes oxidative cellular damage and cell death through reacting 
with different cellular components. In addition, it is now appreciated that ROS 
involves in triggering a programmed or physiological pathway for cell death that 
were not previously thought to be associated straightforwardly with executing cells 
through oxidation (Mittler 2017). In general, the quantity of ROS accumulation can 
activate opposing pathways leading to either survival or PCD. A supportive data 
was obtained by Chlamydomonas reinhardtii subjected to hydrogen peroxide (H2O2) 
treatment. The programmed cell suicide event is shown to be triggered by enhanced 
level of H2O2 which resulted in caspase-3-like protein recruitment, DNA laddering, 
and increased cleavage of PARP (a poly-(ADP)-ribose polymerase-like enzyme) 
(Vavilala et al. 2015). In general, a variety of genes, transcription factors, and sig-
naling molecules associated with the inducible expression of genes mediating 
salinity- induced PCD.  Certainly, this series includes some of those appointed to 
control ROS accumulation, release of Cyt c and Ca2+, and mitochondrial permeabil-
ity transition (Lin et al. 2005, 2006; Li et al. 2007b; Chen et al. 2009a; Monetti et al. 
2014; Biswas and Mano 2015; Bahieldin et al. 2016; Pan et al. 2016).
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PM and its proteins involved in a wide spectrum of cellular processes including 
signal perception-transduction and cellular homeostasis, which are regulated by 
various developmental and environmental stimuli (Mansour 2014; Mansour et al. 
2015). Salinity stress-induced PCD has also associated with the retraction of the PM 
from the cell wall, most likely due to raising the osmotic pressure leading to plas-
molysis (Dauphinee et al. 2014; Zhang et al. 2016). Salinity stress is also known to 
cause membrane disturbance resulting in the loss of membrane integrity, which 
allows intracellular components to leak out of the cells. NaCl-induced K+ efflux is 
believed to be responsible for the effect of salinity on the loss of membrane integrity 
and non-specific membrane damage in a number of species (Shabala et al. 2006; 
Cuin et al. 2008; Demidchik et al. 2010, 2014).

The cell membrane is the first living tissue that perceives signals of abiotic 
stresses including salinity and because of important role and abundance of lipids, 
which is one of the most sensitive ROS targets (Mansour 2014; Mansour et  al. 
2015). Salinity stress may cause electrolyte leakage as it is one of the integral parts 
of the plant’s response to stress. Demidchik et al. (2014) suggested that the main 
consequence of electrolyte leakage is stress-induced K+ release which outwardly 
rectifying K+ channels activated by ROS are responsible for this in plant cells. The 
K+ loss results from ion channel-mediated K+ efflux can induce PCD (Demidchik 
et al. 2010, 2014). The phenomenon of ROS generation, leading also to PCD, is not 
an independent process but may largely be influenced by the K+ loss in conditions 
of stress-induced electrolyte leakage. In plant cells, highly selective outward- 
rectifying potassium channel (SKOR), guard cell outward-rectifying K+ channel 
(GORK), and annexins catalyzing K+ efflux can be activated by ROS (•OH and 
H2O2). In addition, under salinity and oxidative stress, PCD could be induced by 
GORK-mediated K+ efflux (Demidchik et al. 2014).

The mitochondrion has recently acquired renewed attention in toxicology 
because of its crucial role in signaling and mediating cell death in certain cell types. 
It was proposed that mitochondria can also be associated in signaling pathways 
relevant to PCD induction, which is the mitochondrial release of cytochrome c and 
Ca2+ into the cytosol where they trigger cell death caspases (Lin et al. 2005, 2006; 
Reape et  al. 2015). In plants, the permeability of the mitochondrial membrane 
increases due to mitochondrial generated ROS which releases apoptotic mediators 
such as cytochrome c (see Fig. 5.2; Tiwari et al. 2002). Salinity stress caused par-
tially or fully inactivation of the photosynthetic reaction centers which results in the 
downgraded conversion of light energy into chemical energy (Turan and Tripathy 
2015), leading to increased ROS formation (Ambastha et al. 2017). In rice, a recent 
study of the ultrastructure of seedling leaves has proposed the involvement of chlo-
roplasts in PCD induced by salinity stress (Ambastha et al. 2017). Salinity stress 
also reported inducing cell death in isolated protoplasts of tobacco (Lin et al. 2006) 
and rice (Ambastha et al. 2017).

Salinity stress may cause substantial amendments in the Golgi bodies and disor-
dered vesicle formation and trafficking in plant cells. In Arabidopsis thaliana, high 
NaCl levels promoted vesicle formation, which may imply elevated levels of macro- 
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autophagy, plausibly to recycle degenerated intracellular elements (Liu et al. 2009). 
The ultrastructural alterations were observed in not only mitochondria but also 
Golgi bodies, which eventually resulted in autophagy in a halophyte plant, 
Thellungiella halophila (Wang et al. 2010).

5.4  Types of NaCl-Induced Cell Death in Plants

The first approach taken by plant cells for apoptosis-like PCD through DNA frag-
mentation does not include the NaCl-induced osmotic stress because osmotic stress 
cannot be accounted for the activation of endonucleases. DNA laddering results in 
PCD were only found in cells with NaCl and KCl treatment and not in sorbitol- 
treated cells, indicating that ionic component is to be associated with the PCD 
(Affenzeller et al. 2009; Vavilala et al. 2016). Hence, the effects of Na+ ion toxicity 
have attracted much greater interest as an apt target for dissecting the PCD and the 
salinity tolerance mechanisms than the osmotic effects (Arzani and Ashraf 2016). 
Potassium serves as a macronutrient with important roles in a variety of physiologi-
cal processes in plants, including nucleic acid and protein synthesis. The second 
approach taken for NaCl-induced PCD is related to ion homeostasis disturbance 
that results from an excessive amount of Na+ and a K+ deficit in the cytosol. It is 
postulated that reduction of cytosol K+/Na+ ratio in the cells would be an essential 
component in triggering PCD (Joseph and Jini 2010). Under saline conditions, the 
influx of Na+ through plasma membrane by the nonselective cation channels (NSCC) 
causes plasma membrane depolarization which leads to K+ leakage from the cell 
through depolarization-activated potassium outward-rectifying channels (KORs) 
(Shabala 2009; Demidchik 2014; Kim et al. 2014). K+ deficit results from the release 
of K+ from the cytoplasm, which in turn may trigger the effectors of PCD, cysteine 
proteases (Shabala 2009; Demidchik et al. 2010). The final way taken for the PCD 
is associated with NaCl-induced oxidative stress, generating ROS, which causes 
PCD through the deleterious effects to nucleic acids, proteins, lipids, and enzymes, 
as well as increased peroxidation of membrane lipids and membrane leakage. The 
enhanced ROS and reduced mitochondrial membrane potential were observed in 
protoplasts of Nicotiana tabacum treated with salinity stress. Similarly, increase in 
cytosolic Ca2+ was found a few minutes after salinity treatment, and decreased 
membrane potential of mitochondria was also noticed before the occurrence of PCD 
in tobacco BY2 cells (Monetti et  al. 2014). In Thellungiella halophila, salinity 
stress-induced PCD through caspase-like proteases under in vitro conditions was 
observed. Cells undergoing PCD exhibited attributes such as DNA laddering, retrac-
tion of plasma membrane from the cell wall, Cyt c release, and increase in caspase- 
3- like protease activity (Wang et al. 2010). The cells subjected to in vitro salt stress 
(500 mM NaCl) showed PCD symptoms such as DNA laddering, nuclear condensa-
tion, reduced cell viability, and positive TUNEL in wheat (Rezaei et al. 2013).
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5.5  Engineering PCD Pathway to Enhance Salinity 
Tolerance

Transgenic plants regenerated from the cells transformed with recombinant DNA are 
becoming increasingly pervasive and will approach ubiquity in research laboratories. 
The production of transgenic plants has become commonplace and has been employed 
as a routine tool for the introduction of a foreign or related gene to an agronomically 
important crop variety and for elucidating mechanisms of gene expression. Transgenic 
plants expressing novel salinity tolerance genes can be employed to improve crop 
performance under saline conditions (Arzani and Ashraf 2016). The prosperous 
development of transgenic plants with the desired trait, such as salinity tolerance, 
relies on object identification of the genes that are key players in governing that trait. 
Although overexpression of the majority of salinity tolerance genes being in model 
plants such as tobacco or Arabidopsis plants, the list of candidate genes mainly 
associated with Na+ exclusion in the transgenic plants from both Arabidopsis and 
field crops has been compiled by Arzani and Ashraf (2016). The various strategies 
to engineer PCD pathways that enhance salinity tolerance are as follows:

5.5.1  Manipulation of Anti-PCD Genes

The development of transformed plants for resistance to apoptosis could be an 
effective approach to improving salinity tolerance. It has been revealed that the 
generation of transgenic plants expressing anti-PCD genes led to enhancing biotic 
and abiotic tolerance. The family of apoptosis-stimulating proteins of p53 (ASPP) 
with iASPP, as the most evolutionary conserved member (Sullivan and Lu 2007), is 
one of the most promising candidates for use as anti-apoptotic factors. The ASSP 
family members bind to key player proteins regulating cell growth (APCL, PP1) 
and apoptosis (p53, p63, p73, Bcl-2, and RelA/p65) and most likely regulate the 
apoptotic function of p53, p63, and p73 (Sullivan and Lu 2007). The iASPP proteins 
only inhibit the apoptotic function of P53 (including p63 and p73) and do not impact 
the cell-cycle arrest activity of p53.

The expression of different apoptotic Bcl-2 genes can be activated by p53 as a 
transcription factor (Levine and Oren 2009).

In mammals, the family of Bcl-2 (B-cell lymphoma2) proteins, localized in the 
outer mitochondrial membrane, is a key regulator of mitochondrial outer membrane 
permeabilization (MOMP) and subsequent apoptosis. Bcl-2 proteins comprise both 
anti-apoptotic member (Bcl-2, Bcl-XL, and Mcl-1) proteins and the pro-apoptotic 
(Bax, Bak, and Bad) members (Le Pen et al. 2016). They exert influence on balancing 
the mitochondrial membrane potential. Although the members of Bcl-2 family, cas-
pases, and the members of the inhibitor of apoptosis (IAP) family are important regu-
lators of apoptosis in animals, conservation cycle does not evidently occur in plants. 
However, plant PCD and animal apoptosis have many common morphological 
resemblances. The expression of anti-apoptotic (pro-survival) genes has generally 
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been investigated in the model or crop plants using animal and plant target genes. For 
example, tomato plants were transformed with animal anti-apoptotic Bcl-xL and 
Ced-9 genes and led to retarded cell death or lack of cucumber mosaic virus symp-
toms (Xu et al. 2004). Tomato and tobacco plants expressing SfIAP gene from an 
insect (Spodoptera frugiperda) preclude cell death caused by the necrotrophic fungus 
Alternaria alternata, salinity, heat, and fungal toxin fumonisin B1 (FB1) treatment 
(Li et al. 2010). Likewise, expression of SfIAP gene has enhanced salinity tolerance 
in rice (Hoang et al. 2014).

The family of Bcl-2-associated athanogene (BAG) proteins is conserved in the 
eukaryotic organisms. The anti-cell death activity of BAG has been described 
through constitutive overexpression of AtBAG4 in rice (Hoang et al. 2015). All BAG 
proteins share a common signature motif at the C terminus (BD domain), which 
directly mediates binding to the Hsp70/Hsc70 heat shock proteins (see the recent 
review by Kabbage et al. 2017). The ubiquitous 70 kDa Hsp70 family proteins play 
a crucial role, as molecular chaperones in mediating the refolding of denatured pro-
teins and the folding of newly synthesized proteins. Therefore, Hsp70 proteins can 
assist anti-apoptotic Bcl-2 proteins through protein-protein interaction at marked 
essential points to suppress apoptosis pathways (Joly et al. 2010). Overexpression 
of Hsp70 derived from Citrus tristeza virus in rice conferred tolerance to salinity 
stress (Hoang et al. 2015). In rice, transgenic plants overexpressing Bcl-2 gene sig-
nificantly alleviated PCD symptoms through reduction of NaCl-induced K+ efflux 
and inhibition of the expression of VPEs (Kim et al. 2014).

5.5.2  Overexpression of Inhibitor of Apoptosis (IAP) Genes

Although plant genomes do not contain IAPs, tolerance to cell death induced by 
stress has been detected in the ectopic expression of viral and animal IAPs in plants. 
In tobacco, transgenic plants overexpressing the baculovirus Orgyia pseudotsugata 
nuclear polyhedrosis virus IAP (OpIAP) protein were resistant to tomato-spotted 
wilt virus and the necrotrophic fungi Cercospora nicotianae and Sclerotinia sclero-
tiorum (Dickman et al. 2001).

5.5.3  Interfering RNA (RNAi)-Induced Apoptosis Gene 
Silencing

Alternatively, small interfering RNA (siRNA)-induced transcriptional gene silenc-
ing system can be used to knockdown or knockout the expression of apoptotic 
genes. Long noncoding (lncRNA) and microRNAs miRNA are the two foremost 
subtypes of regulatory noncoding RNA (ncRNAs). They comprehensively regulate 
the interrelated steps and mediate the regulated cell death including apoptosis and 
necrosis through their interaction as well as in association with assorted 
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intracellular components (Su et al. 2016). Cytoplasmic mRNAs can be silenced by 
miRNAs through either promoting translation repression, expediting mRNA decap-
ping, or triggering an endonuclease cleavage (Bagga et al. 2005; Wu et al. 2006; 
Pasquinelli 2012; Nam et al. 2014). As such, the alternative cleavage and polyade-
nylation mechanisms that produce varied 3′-UTR isoforms influence the efficiency 
of miRNA targeting, while the translation inhibition is dependent on the CCR4-
NOT complex and the miRNA-induced silencing complex (miRISC), which causes 
the recruitment of eIF4A2 and locked on the mRNA region between the start codon 
and the pre-initiation complex (Nam et al. 2014). In humans, loss of microRNA- 
mediated repression of Bcl2 gene expression, in many instances, causes chronic 
lymphocytic leukemia (CLL) (Anderson et al. 2016). RNAi-mediated silencing of 
P69B a substrate of two matrix metalloproteinases (Sl2/3-MMP) from tomato and 
located upstream of Sl2/3-MMP in tomato transgenic plants led to reduced expres-
sion of the cell death marker genes tpoxC1, hsr203j, and Hin1 (Zimmermann et al. 
2016). VPEs are cysteine proteinases that function as key moderators of stress- 
induced PCD in plants. Suppression of OsVPE3 gene in the transgenic lines of rice 
led to improved salinity tolerance (Lu et al. 2016). Transgenic rice plants overex-
pressing Bcl-2 resulted in inhibition of salt-induced PCD through a significant 
reduction of the transient increase in the cytosolic Ca2+, suppression of OsVPE2 and 
OsVPE3, expression, and inhibited K+ efflux across the plasma membrane (Kim 
et  al. 2014). In Arabidopsis, inhibition of FB1-induced cell death was observed 
using loss of function mutation in all four VPE (αVPE, βVPE, γVPE, and δVPE) 
genes (Kuroyanagi et  al. 2005). In Nicotiana benthamiana, silencing VPE1a and 
VPE1b diminished sensitivity to cell death caused by the elicitor of bacterial hairpin 
but did not affect cell death caused by ethylene-inducing peptide1 (Nep1), the fun-
gal necrosis, and the elicitor of oomycete boehmerin (Zhang et al. 2010). Therefore, 
although VPE1a and VPE1b may involve in elicitor-triggered immunity, they execute 
cell death in a context-specific manner.

5.5.4  Repression of ROS-Induced PCD

The signaling and biological roles of ROS (e.g., •O−
2, H2O2, •OH, 1O2) in higher- 

order eukaryotic cells are still controversial and are unclear. Paradoxically, it is 
conceivable that both the stimulatory and inhibitory capacities of ROS can be related 
to its conspicuous biological properties, which comprise half-life, chemical reactiv-
ity, and lipid solubility (D’Autreaux and Toledano 2007). ROS, on the one hand, 
appear to act as signaling molecules that mediate intercellular pathways controlling 
cell growth, differentiation, inflammation, survival, and immunity when available at 
a moderate levels (D’Autreaux and Toledano 2007; Foyer and Noctor 2016; Gilroy 
et  al. 2016; Mittler 2017). On the other hand, the excessive generation of ROS 
results in oxidative damage to essential biological molecules such as DNA, RNA, 
membranes (lipid peroxidation), and proteins, which causes the demolition of cel-
lular integrity through amending their functionality. During normal homeostasis, 
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endogenous ROS production mainly takes place in the Ero1-PDI oxidative folding 
system in ER, the electron transport chain in the mitochondrion, and the membrane- 
bound NADPH oxidase (NOX) complex (Sevier and Kaiser 2008). Considering 
PCD can be attained by enhanced ROS accumulation and abiotic conditions like 
salinity stress, genetic programming of cellular metabolism in plants, repressing 
salinity stress-induced PCD, would lead to an equal relative increase in yield under 
saline conditions (Xu et al. 2004; Mittler and Blumwald 2010; Hoang et al. 2015). 
Constitutive overexpression of maize ABP9 (ABRE-binding protein 9) gene in 
transgenic Arabidopsis plants downregulated cellular ROS content induced by 
stress and ABA and diminishes cell death (Zhang et al. 2011). Interestingly, aside 
from the key roles of SOS1 and SOS2 in salinity tolerance (see the recent review by 
Arzani and Ashraf 2016) under salinity stress conditions, they influence the expres-
sion of other genes involving in the ROS scavenging activity. Verslues et al. (2007) 
reported the physical interaction between SOS2 and NDPK2 (H2O2 signaling pro-
tein) with CATs. Expression of a baculovirus anti-apoptotic protein, p35, has been 
observed to suppress PCD induced by H2O2 in insect cells through clearly seques-
tering ROS. It was speculated that the ROS contents can be regulated by either p35 
gene directly or Hsp70 and AtBAG4 genes indirectly. In tobacco, transgenic plants 
expressing p35 (gene from Autographa californica multiple nucleopolyhedrovirus 
(AcMNPV)) enhanced abiotic stress tolerance including salinity, which was associ-
ated with the capacity to scavenge ROS by p35 (Wang et al. 2009). As a final over-
view, Table 5.1 summarizes the reported candidate genes involving in PCD pathway 
and while overexpressed in the transgenic plants to enhance salinity tolerance.

5.6  Concluding Remark

The molecular mechanisms of salinity-induced PCD via autophagy cell death 
(ACD) remain to be elucidated by studying the autophagic vacuolization of the 
cytoplasm and the dynamics of the vacuole in various plant species. Apoptosis and 
anti-apoptosis phenomena occur as a consequence of the successive development of 
genetic alterations in multiple genes and epigenetic changes that regulate activities 
of apoptotic caspases responsible for the execution of various PCD.  Therefore, 
another area of research which illuminates these phenomena is that which explores 
DNA modifications and dynamic histones related to crucial alterations of genome 
expression during the PCD. Hence, studies to elucidate the common and innovation 
features existing between abiotic-induced PCD and pathogen-induced PCD will 
assist in understanding the physicochemical details of apoptotic-like PCD which 
needs for selectively manipulating target cell in each of the two conditions.

Nevertheless, improving salinity tolerance through manipulation of PCD path-
ways in crop plants could be attained by:

 1. Upregulation/overexpression of anti-apoptosis genes and downregulation or sup-
pression of pro-apoptosis genes which are functionally indispensable and struc-
turally conserved throughout the plant and animal kingdoms. For instance, the 
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protein members of the Bcl-2 family comprised both pro-apoptosis and anti- 
apoptosis genes that regulate the release of cytochrome c and other apoptotic 
alterations in the mitochondrion.

 2. The repression of the plant caspase-like enzymes including VPEs, metacaspases, 
and phytaspases also called subtilisin-like proteases (subtilases) are alternative 
candidates for “silencing” or “downregulation” by emerging genetic and epigen-
etic tools.
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